| ディビジョン番号 | 5 |
| :--- | :--- |
| ディビジョン名 | 錯体化学•有機金属化学 |


| 大項目 | 1. 錯体化学 |
| :--- | :--- |
| 中項目 | $1-3$. 生物無機化学 |
| 小項目 | $1-3-1$. 金属錯体とペプチドを組み合わせた機能性分子（ペプチド折り紙）の設計 |

## 概要（200字以内）

金属配位性の非天然アミノ酸を導入したペプ チドを金属錯体化することにより，金属錯体を コアとし，アミノ酸残基を機能性部位としても つ機能性分子が設計できる。このような分子は，蛋白質のように折り畳めないペプチドから見る と，配位結合を利用することにより人工的に折 り畳んだ機能性ペプチド（ペプチド折り紙）で あり，金属錯体から見ると，金属錯体の周囲に多数の官能基をアミノ酸側鎖として導入できる人工金属蛋白質である。


## 現状と最前線

金属酵素など生体内には分子レベルで極めて高効率な触媒作用を示す例が知られているが，同様の作用を示す人工分子を創製する一般的な設計指針はまだ得られていない。このような人工分子は，合成により安定供給が可能であり，生体外など様々な環境で安定に利用できること などが期待される。
人工蛋白質を得る試みには，機能に関わるアミノ酸側鎖官能基を模倣した分子を合成するバ イオミメティックケミストリー，ペプチドの二次構造を束ねることにより蛋白質様高次構造を再現するデノボデザインペプチドなどが知られている。また近年では，蛋白質補因子を合成金属錯体と入れ替え，人工金属酵素を得る試みも行われている。

ここで紹介する「金属錯体とペプチドを組み合わせた機能性分子の設計」は，金属配位性の非天然アミノ酸をペプチドに導入することにより，金属錯体を形成させることでペプチドが折 り畳み，一定の高次構造をもたせられることに特徴がある。蛋白質は折り畳んで高次構造をと ることにより機能を発現するが，折り畳むには一定以上の長さが必要で，ペプチド（Mw く $10^{4}$ ） のように短い場合は折り畳み構造はとれないのが一般的である。また金属酵素では，活性部位 である金属イオンだけでなく，その周囲のアミノ酸残基が活性発現に重要な役割を果たしてい る。錯体合成において，多数の官能基を導入することは容易ではないが，本分子設計ではそれ が可能である。

一例として，ビピリジン骨格を有する非天然アミノ酸（5Bpy）を三残基導入したペプチドにつ いて紹介する（図）。ビピリジンは多様な金属イオンに強く結合するため，このペプチドは，金属錯体を形成することにより一定の高次構造に折り畳む。ここでは中心金属にルテニウム （II）を選択しているが，コアとなるルテニウムトリス（ビピリジン）錯体の基本的な光機能を保持していることが示された。またこの錯体は，6 つのピリジン環に全て異なる官能基を導入 することが容易にでき，精密な分子設計が可能である。


H－GGA－5Bpy－FGPGGA－5Bpy－FGPGGA－5Bpy－FGG－NH ${ }_{2}$


5Bpy

将来予測と方向性
－5年後までに解決•実現が望まれる課題
多様な配位性非天然アミノ酸の合成研究
折り畳み構造が 1 種類，あるいは少数となる分子設計研究
簡便な折り畳み構造解析の手法研究
単分子での機能開発研究
－10年後までに解決•実現が望まれる課題
多核金属錯体における分子構築研究
細胞内での作用に関する研究
医薬品としての応用研究
複数の機能性分子を組み合わせた人工光合成系の構築
キーワード
人工蛋白質•人工金属酵素•人工光合成・ペプチド・非天然アミノ酸

